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Nous pensons que le phdnom6ne important dans la 
formation et les propri6tds de cette phase est la mise en 
ordre darts les plans d'empilement, comme le sugg6rent 
les rdsultats obtenus/t haute tempdrature. La propaga- 
tion de cet ordre sur une pdriode de 27 plans pose un 
probl6me non rdsolu/t ce jour. 

Sato et al. (1967) ont li6 les modulations d'empile- 
ment pdriodiques aux modulations d'ordre des anti- 
phases p6riodiques, ces deux phdnom6nes apparaissant 
simultandment dans les exemples qu'ils traitent. Dans 
le cas de Au,Mn4, /~ aucun moment n'intervient le 
phdnom6ne d'antiphase. I1 n'y a donc pas de raison 
d'invoquer le m~me mdcanisme de stabilisation pour 
ces deux types de structure qui peuvent ~tre parfaite- 
merit inddpendants. 

Nous remercions M G. Jdhanno qui nous a fait pro- 
fiter de son expdrience sur les alliages or-mangan6se et 
est /t l'origine de ce travail pour la composition 
AuuMn4. Nous remercions 6galement M P. Vdrine 

pour sa collaboration dans l'dlaboration des dchantil- 
Ions, ainsi que M P. Pdrio avec qui nous avons eu de 
nombreuses et fructueuses discussions. Pour la diffrac- 
tion de neutrons, nous remercions particuli6rement 
MM Mdriel, Sougi et Allain. 
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Anisotropic Corrections of Measured Integrated Bragg Intensities for Thermal Diffuse 
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The method of evaluation for the contribution of TDS to Bragg reflexions is given on the basis of the 
general formalism developed in the previous paper [Harada & Sakata, Acta Cryst. (1974), A 30, 77-82]. 
TDS tensor Ap is expressed by a matrix product as ~T~, where T is the tensor that characterizes the 
anisotropy of TDS in reciprocal space and o is the transformation matrix of scattering vector from 
Cartesian axes to crystallographic reciprocal axes. All the components of T and t~ are listed in a table 
for the nine groups of elastic constants for practical use. It is, however, found that there are only 
seven matrix forms of Ap corresponding to the seven crystallographic systems. Two different approx- 
imations proposed previously for Nillson's formalism in the estimation of the scan area of Bragg 
reflexion are shown to be available also for the general formula. The numerical calculations of the TDS 
correction for an NaC1 single crystal are made with these approximations and they are compared with 
the experimental measurements by Renninger and with the results of calculations given with other 
approximations. No substantial difference is seen among the results of calculations and they are in good 
agreement with experiments. 

1. Introduction 

In a kinematical approximation in X-ray and neutron 
diffraction theory, the first-order thermal diffuse scat- 
tering, TDS, due to acoustic lattice vibrations is known 
to produce sharp maxima at reciprocal-lattice points 
in addition to the Bragg peaks. If a smooth back- 
ground is subtracted in the normal way, the observed 
integrated intensity for the Bragg scattering I(obs) is 

given in the form 

I(obs)=I(Bragg) (1 +~x-c~) (1) 

where ~ll(Bragg) is the contribution from the first- 
order TDS under the Bragg peak and ~I(Bragg) the 
TDS already corrected in the course of the background 
subtraction. 

Recently it has been shown by the present authors 
(Harada & Sakata, 1974) that the TDS correction ~1 
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can be written in a quadratic form in terms of the Mil- 
ler indices h, k, I as 

oq = Afllih 2 + Af122 k2 -I- Af13312 q-- 2Afl~zhk 
+ 2Af123kl + 2Afl~ahl , (2) 

or in an abbreviated matrix notation as 

~ = h A l l h ,  (2') 

where h is a column vector consisting of the three ele- 
ments h, k, l, and fi the transpose of the vector h. The 
anisotropy of TDS among the reciprocal-lattice points 
is characterized by the tensor All in equation (2), which 
has 3 × 3 elements and is symmetric. The form of the 
tensor All is closely related to the crystallographic 
system. 

Since this formula is quite general, the TDS contri- 
bution to the observed integra.ted Bragg intensity can 
be estimated for a general crystal without any restric- 
tions due to the crystal symmetry. For practical use of 
this formula, however, it is necessary to establish a 
method for evaluation of the tensor All. It is the pur- 
pose of the present paper to describe a method and 
then to show the relations existing between the All and 
the symmetry of the crystal. 

2. Expression for tensor Ap 

The TDS which contaminates the Bragg scattering is 
mainly due to acoustic lattice vibrations of small wave 
vector, which are very well approximated by the elastic 
waves of long wavelength. Since the nature of such 
elastic waves can be described by giving a set of elastic 
constants C~j,* the lattice nature of the crystal does 
not appear in the TDS in this limit. It is, therefore, 
usual and convenient to describe such TDS with re- 
spect to the Cartesian coordinate axes for which the 
elastic constants are given, instead of the crystallo- 
graphic axes. 

The intensity distribution of the first-order TDS in 
reciprocal space is given in a quadratic form in terms 
of the three components of the scattering vector Q 
along the orthogonal axes (Harada & Sakata, 1974), 

kBT 
J~(q) -  q2 ~ (ttk-1)tmatam (3) 

where (A-~)zm is the element of the inverse matrix of 
A which is obtained from the elastic constants Ctj and 
the direction cosines of wave vector q; i.e. 

Axx=Cn#~ + C661~ 2 71- C551~ 2 "[- 2C560yqz -I- 2C~50=~ 
q- 2G6~xO,. 

A22 = C66q2x -Jr- C22q 2 -t- C44qz 2 -Jv 2C~O, Oz + 2G6OzOx 

-b 2 G r # x q r  

A33 = GsO2x + C440~ + C33q2z + 2C340y#z + 2C3sOz,~x 
q- 2C450x0, 

* For the expression of elastic constants, two suffices are 
used for convenience. 

A12= c~6ol + c2d~ + c45o~ + (c~5 + c,~)o, oz 
"[-((714 -1- C56)qzq x -~- (C12 --t- C66)qxl~y 

A13 G54~ + ~2 -2 = C46q, + C35q z + (C36 + Gs)4y4z 

A23 = C5642x -[- C24(] y 2 --[- C34qz 2 -[-((723 + C44)qyl~z 

-I- (C36 Jr- C45)l~zq x "31- (C25 -~ C46)qxOy. (4) 

Thus, (A -~) forms a 3 x 3 symmetric tensor and de- 
scribes the anisotropy of TDS in reciprocal space due 
to the anisotropic properties of crystals. 

The contribution of the TDS to Bragg scattering is 
given by the integration of equation (3) with respect 
to q for the range of measurement in reciprocal space. 
If we thus introduce a tensor T, the components of 
which are defined by 

kBT I (A-1)lm Tim = -(2~3)3 q2 d3q, (5) 

we see that the ratio of the TDS to the Bragg intensity, 
el, is also written in a quadratic form by using this 
tensor, 

oq= ~ Z T, mQ,Q,,,. (6) 
I m 

If the range of the integral in equation (5) is modified 
so as to be applicable for the background region, the 
background correction a~ in equation (1) is also rep- 
resented by the same form as expression (6). 

In the treatment of the Bragg scattering, however, 
it is extremely useful to express the scattering vector 
Q in terms of the Miller indices hkl defined in the 
crystallographic reciprocal lattice. We then transform 
the coordinates from the Cartesian axes to the crys- 
tallographic reciprocal-lattice axes. By this coordinate 
transformation expression (6) is rewritten into the 
quadratic form of expression (2). The tensor All in the 
expression (2), therefore, is given by 

knT (A-1),~ 
Afllm--(27/7) 3 ~ a ~ alp~Tmq I qZ d3q, (7) 

where ~ is the 3 x 3 matrix to transform the scattering 
vector Q in the Cartesian axes to the crystallographic 
reciprocal-lattice axes. In matrix notation All is ex- 
pressed as 

Al l=~T6 (8) 

where ~ is the transpose of ~. In order to evaluate All, 
therefore, it is required to provide all the components 
of the matrices ~ and T for crystals with symmetries. 

3. Matrix form of 

The definition of the transformation matrix ~ in equa- 
tion (7) is the following, i.e. in terms of this matrix 
and the Miller indices hkl, we can write the three com- 
ponents of the scattering vector Q along the orthogonal 
axes as, 
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Q~ = anh + alzk + al3l 
Qy -- azxh + azzk + azfl 
Qz=trai h + o'32k + 0"33l. (9) 

Thus, if the direction cosines of the reciprocal-lattice 
vector a* to the Cartesian axes are denoted by dn, d21, 
d31 and of b* and c* by ds2,dzz, da2 and dl3, d23, da3, tr is 
expressed by 

[a*dn b*dl2 c*dl3~ 
, =  [a*dn b'd22 c*d2a] 

\a'd31 b*da2 c*d3J,  (10) 

where we have a simple relation among the direction 
cosines 

d2j+d2j+d2j= 1 . (11) 

According to Nye (1957), the x axis of the Cartesian 
system is taken to be parallel to the crystallographic 
a axis and the z axis is in the ac plane. In this geometry 
the y axis becomes parallel to the b* axis. This geometry 
gives directly d12=0, d22= 1 and da2=0. Since the c* 
axis is normal to the ab plane, dl3 = 0 is also obtained. 
The relation between the Cartesian axes xyz and the 
crystallographic axes abc is illustrated in Fig. l(a) for 
the triclinic system. From Fig. l(a) it is seen that the 
components o f ,  can be written as 

i f =  

----:---- a* 0 0 
sin a 

cos ~ cos f l -  cos ), a* b* cos fl cos ) , -  cos 
sin a sin fl sin fl sin 7 

- J cos fl a* 0 6 c* 
sin a sin fl sin fl sin-------~ 

C* 

(12) 
where 02= 1 - cos  2 ct-cos 2 f l-cos2?+2 cos ~ cos fl cos 7. 
If we substitute appropriate angles for ~, fl and ? in 
the expression (12), the transformation matrix for 
any other crystallographic system with higher symmetry 
except the trigonal system can be easily obtained. 

For the trigonal system, it is much easier to choose 
the Cartesian axes another way, as illustrated in Fig. 
l(b): the z axis is taken to be along the [11 l] direction 
and the x axis parallel to the projection of the a axis 
on the (111) plane. In this geometry, as seen from Fig. 
l(b), a is expressed by 

a* sin Z* (b*/2) sin Z* 
~= 0 (1/3b*/2) sin X* 

a* cos Z* b* cos X* 

-(e*/2) sin Z* \ 
-(1/3c*/2) sin Z*| 

c* cos ,~* / 
(13) 

where 
a* = b* = c* 

sin X* = 1/2( 1 - c o s  a*)~ 

cos Z*= 1/(1 + 2cos a*)/3. 

By using the two expressions (12) and (13), the trans- 
formation matrix tr can be obtained for crystals of any 

crystallographic system. For practical use fuller de- 
scriptions o f .  are listed in Table 1 for all the seven 
crystallographic systems. 

4. Integration of Tim for scan volume 

In the integral (5) of the expression for Tzm, (A-i)lm is 
given as a function of the direction cosines of wave 
vector, 4x, 4y, #z. The integral with i espect to q is to be 
taken for the small volume swept out around the re- 
ciprocal-lattice point by a counter in the measurement. 
The region of the integration thus depends on the size 
of the counter aperture used and also on how the in- 
tegrated intensity of the Bragg scattering is measured; 
i.e. [2 or 0-20 scans etc. In Fig. 2 the regions of the 

C 7 
b 

I \  ~ L× y b  
I I 
I I 
I I 

/ f  (b) 

Fig. 1. Relation between the Cartesian axes x,y,z and the 
crystallographic axes a, b, c; (a) for the trielinie system and 
(b) for the trigonal system. 
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Table 1. The matrices of apa, Cu, ~ .  and zlflu for the seven crystallographic systems 

Crystallographic 

System 

Triclinic 

Monocl inic 

Trigonal 

Hexagonal 

0r thorhombi c 

Tetragonal 

Cubic 

Point group 

l, T 

m 
2 
2/m 

3, ~" 

~'m, 

32, 

3m 

6,~,6/m, X//a 

~m2,6mm. Y//b* 

622,6/mmm Z//c 

mm2, Xlla 

222, Y//b 

mmm Z//c 

4, T. 4/m 

x//a 
Y//b 
Z//c 

~'2m. 

4ram, 

422, 
4/mmm 

23, m3, 
X//a 

~'3m, 
y/l b 

432, 
Z//c 

~3m 

Transformation Matrix 

Selection of Axes 

x//a 
Y//b* 

Z: on the 
a-c plane 

Expression of 

c ~+ * 1 

~a 0 0 

osocos6 - cosy cosBcosY - cosa 
sinasinB a* b* sinBsiny c* 

\ - 6 cosS a* \ ~ 0 ~ c *  

+ 6~ = 1 - costa- cos ~1~ - cos~y + 2cosacosBcosy 

Y//b 0 b* 0 

Z//c* - a* cos 8 0 c* 

planes. 1 0 T~*slnx* - - ' ~  sinX* 

Y: on the a* cos~ b*cosx* c*cosx* 
(Ill) plane 

where a* = b* = c* 

Z// <lll> sinx* = V2(1 - cos~)/3 
cosx* = ~2(0. S + cosa*)/3 

I +a* 0 i 1 a* b* 

0 c* 

a* 0 0 / 
0 b* 0 

I 0 0 c* 

I a* 0 0 

0 a* 0 

0 0 c* 

I a* 0 0 1 0 a* 0 

0 0 a* 

Elastic Stiffness 

Constant Tensor 

Czz 612 C,) Czw Czs Czs 

C~ C~ C~ C~ C~ 

C~ C~,, C3s C~ 

Cww Cws C~ 
k 

Css Cs~ 
/ *'~ C~ 

i 
Cn C~ Cz~ 0 C:s 0 1 

C~ C~ 0 C~ 0 

C3) 0 C)s 0 

Cww 0 C~6 

Css 0 

C~ / 

f c~ c~ c~ c~-C~o i \ 
cn c:~ -c~ c:s 

c~ o 

c~ 0 2C~s 

C~ 2C~ 

(C.-C~)/2 

Cu C~ -Czw 

C. 0 
Cw. 

C~. 2Cz~ 
(c.-c~Y 2/ 

' Cu C~ C~: 0 0 0 
Ca C:~ 0 0 0 

C~ 0" 0 0 
CN~ 0 0 

C~ 0 

Cu C~ C~ 0 0 0 1 
C~ C~ 0 0 0 

C~ 0 0 0 
C~ 0 0 I 

i 

Css 0 / 
C6s 

lCn C~ Cz) 0 0 C:~ 
Cn C:3 0 0 -C~6 "~ 

C33 0 0 0 
CN~ O 0 

C~w 0 / 
Css 

t 
Cn C~ C~ 0 0 0 1 Cu C~ 0 0 0 

C~3 0 0 0 
C~ 0 0 

C~ 0 
C6s 

ICu  C~ C~ 0 0 0 
Cn C~ 0 0 0 '~ 

C. 0 0 0 
C~ 0 0 

C~. 0 / 
C~. 

Expression of T 

T~2 T23 
T33 

° 

T~2 
T33 / 

I Tu Tu Tz~ 1 T~ T~ 
T3s 

I Tn 0 0 1 
Tn T2~ 

{T:z 0 0 ' ) 

Tn 0 

T~3 

Tu 0 0 1 
T~ 0 

Ta3 

I Tn 0 0 ) 
Tn 0 

T33 

Expression of ~B 

C ABu ASu AB:3 1 
A8~ AB2~ 

AB33 

ABn 0 ASu 1 
A6)~ 0 

A•33 

( ABn AS~ fiS~ 
fiB2~ AB23 / 

AB3~/ 

1 

AB3~ j 

/ ABII 0 0 '~ 

J 
AB22 0 

/ A6u 0 0 

ABu 0 ) 

AIB~3 
k 

Tu 0 0 ) 
Tn 0 

Tz] 

ASh 0 0 1 
ASh 0 

ASh 
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integrations are shown schematically for 12 and 0-20 
scans. As seen from the figures, the regions around the 
reciprocal-lattice point are not simple and convenient 
forms for the evaluation, so that it is necessary to make 
approximations. 

It should be noticed, however, that the integration 
is very similar to that encountered in Nillson's (1957) 
formalism for the TDS correction of the cubic system, 
for which several approximations have so far been con- 
sidered for the evaluation. These approximations can 
be applied to the present general form. 

(a) Spherical-volume approximation 
Pryor (1966) proposed replacing the region of the 

integral by a sphere of appropriate volume. With this 
approximation the radial part of the integral (5) can 
be evaluated separately and then the triple integral is 
reduced to a surface integral; 

kBT 
T, , , -  (2zc)a qm l I (A-1),rodS , (15) 

where qm is the radius of the sphere and dS is an ele- 
ment of area on the surface. The double integral in ex- 
pression (15) can be easily evaluated if the numerical 
Gauss method is employed with the use of an electronic 
computor. 

Cochran (1969) has suggested replacing the volume 
swept out in reciprocal space by a sphere of the same 
volume. By the use of this approximation, the radius 
q,, is given in the form 

4= 
3 q'3=(2zt/2)3 (sin 20)faV1V= (16) 

for the t'2 scan, where V1 and Vz are the horizontal and 
vertical divergence angles of the counter aperture sub- 
tended at a specimen position and f2 the angle rotated 
around the vertical axis in the measurement. We can 
easily extend this method to the case of a 0-28 scan 
and we have 

3 q'~ = sin 20 2 sin V1V2- (17) 

The geometrical relations between scan volume and the 
sphere replacing it are illustrated also in Figs. 2(a) and 
(b) for the two scan modes. 

(b) Approximation by taking average value of (A-1)lm 
In the formulation for a cubic crystal Nillson (1957) 

has replaced the quantity corresponding to the (A- l ) , .  
in the present formula (5) by its average value and 
taken it out of the integral. When this approximation 
is extended to the present general case, T~,, can be 
written as 

kBT I 1 T,m= ~<(z~k-1)lm> -~-daq ,  (18) 

where <(A-1)lm> is the average value of (A-1)lm. It has 
been also shown by Nillson (1957) that for an • scan 
the integration can be performed analytically, if the 

height of a counter aperture is taken to be infinite. 
For the more practical case where the counter aperture 
has a finite size, Cooper & Rouse (1968) have shown 
that the triple integral is reduced to the double inte- 
gral for which numerical calculation can be made by 
computer.* 

Since, in principle, the average value <(A-~).,,> is 
represented by 

1 
(19) 

expression (18) is rewritten as 

Ttm=_(2_~)30_~kBT 1 l I (A_X)tmdS , (20) 

where the integral of (1/q 2) for the scan volume is 
denoted by Q. It should be noticed that the expression 

* Different approximations have been considered by Skelton 
& Katz (1969) and Jennings (1970). All these approximations 
may also be available for the present integration (18), without 
many modifications. 

(,7) 

20-~ 

~-q== t~--J 3sin28 (2si+) ~*~2 

(b) 
Fig. 2. Integral regions in reciprocal space swept out by the 

counter in measurement; (a) for the [2 scan and (b) for the 
0-20 scan. 
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(15) coincides with (20), if the integral 0 is replaced by 
4ZCqm. 

5. Symmetry of the crystal and tensor Tlm 

It is seen from equations (15) and (20) that the matrix 
form of the tensor Tlm depends very much upon the 
average value of (A-~)tm for both the approximations. 
If all the components of the elastic-constant tensor are 
known, (A-~)zm can be easily obtained as a function 
of Fl~, Fly and Fl~. The matrix form of the elastic con- 
stants is classified into nine groups as listed in Table 1 ; 
there are two forms for the trigonal and the tetragonal 
systems and one for each of the other systems, i.e. tri- 
clinic, monoclinic, hexagonal, orthorhombic and cubic 
systems. However, there are eight forms of T~m for 
these nine groups, since Tlm for the two groups of the 
tetragonal system can be reduced to one. This can be 
proved as follows. 

One of the subgroups belonging to the tetragonal 
system has point-group symmetry 4/rn, 4 or 4 and the 
other 42, 4mmm, 4/rnmrn or 42m. The elastic constant 
matrix of the former subgroup is represented as 

i Cll C12 ell 

Then, we have 

All-- CiiFll 
A22 = C6~Fl i 
/ 3 3  ~-'~" C44Fl i 

C13 0 0 C16\  
c~3 o o -A6~ 

A 3 ° ° i )  C44 0 

C44 C e d  • 

~1- C66Fl 2 Jr" C44Flz 2 71_ 2A6FlxFly 

.jr - ~2 ~2 C i i  q ~, "-t- C44q z - 2 C16FlxFly 

+ c4,o ~, + c~3Fl~ 

(21) 

A ~ =  A d ~  - A d  ~, + CA2 + C~6)FlxFly 

A ~3= ( A 3  + C..)FI~Flx 

A ~3 = ( A 3  + C4.)FlyFI. . (22) 
From the definition of the inverse matrix, (A-~)~m is 
given as 

(A -  % = (Az2A33 - A2a&3)/ A 
(A -  % =  (A ~A3~ - A,3A ,3)/A 

( A -  t )33=(At tA2z-  AxzA~2)/A 
(A- % = CA ~A ~3 - A ,2A33)/~ 

(A- % = (,4,~A23 - A22A,3)1,4 

( A - %  = (A~2A~3- A~A.)/~ (23) 

where A = det IA[. 
We see from equations (22) and (23) that the follow- 

ing relations exist for the diagonal components; 

(A- ~)~t =f(Fl~, Fly, Fl~) - 2C~6Fl:,Flyg(Flx, Fl,, Fig) 

CA- ~)22 =f(Fl~., Fl~, Fl,) - 2G6Fl,,Flyg(Fl~, Fly, Fl,) 
(A-~)33 = h(Fl~, Fly, Fl~) + 2C.,6FlxFly(i(Fl,:, Fly, Fl,) 

-i(Fly, Fl~,Fl,)}+Ct6(Fl2x-O~) (O~ + 0 z +  11 (24) 

where f(Ox, Oy, O~), g(Ox, Fly, O~), h(Flx, Fly, Flz) and i(Fl~,Fly, 
Fl~) are all the even functions of Fl~, Fly and Flz. Since the 
surface integral of (A-1)tm of equations (15) and (20) 
is equivalent to taking the summation of (A-1)tm for 
all the directions of 4, we see that 

~ f (Flx , Fl , , Flz ) = ~ f ( Fl , , Flx , Flz ) 
all q 

Z i(Flx, Fl,,Flz)= Z i(Fly, Fl~, Fl~) (25) 

and Y. 2C~6Fl~Fly x gCFl~, Fly, Flz) is zero, because this is the 
odd function with respect to qx and qy. It should be 
noted that the function h(Flx, Fly, Flz) is different from 
f(Flx, Fly, Fl~); C12 is involved as an off-diagonal component 
of elastic constants in the function h(Flx, Fty, Fl~), while C13 
in the f(Fl~, Fl,, Flz). Thus we have 

T.  = T,2 ~ T33. (26) 

On the other hand, for the off-diagonal components 
of (A-1)~m, we have 

(A-~)~z=j ( Fl~, Flr, Fl~) + G6k(  Flx, Fly, Flz) ( Flz _ @ )  

(A -  ~)23 = l (Flx, Fly, Flz) + Cx6rn( Fl,,, Fly, Fl~) ( Fl ~ - Fl ~) 
- 2C~6Fl~Flyrn(Fly, Fix, Fl~) 

( A - % = t ( Fl ~ , Fl , , Fl z ) + C ~ 6 m ( Fl ~ , Fl , , Fl 3 ( Fl ~ - Fl ~, ) 
+ 2G6OxFl, m(Fl,, Fix, Oz) (27) 

where l(Fl~, Fl,, Fl~) and rn(Fl~, Fly, Fl~) are both odd func- 
tions of Fl~ andj(Flx, Fly, Fl,) an odd function of Fl~, Fly, while 
k(Fl:,, Fly, Flz) is an even function of Fl~, Fly, Fl~. Summations 
of these functions over all directions lead to the fol- 
lowing relations, 

k(Fl~, Fl , Flz) (qZ - q ~ ) = 0  
all q 

ZJ(O,,,Fly, FI~) = Z/(Fix, Fly , Fl~) = 0  

Z m(Fl~, Fly, Fl~) = 0 .  (28) 

Therefore, we have 

T,z= T23= T~3=0. (29) 

For the latter subgroup of the tetragonal system, the 
elastic-constant matrix is the same as matrix (21) ex- 
cept that C~a=0. Under this condition, it is compara- 
tively easy to find the following relations for the ele- 
ments of the inverse matrix (A-~)~m, 

(A- 1)ll =f(Flx, Fly, Flz) 

(A - a)22 =f(Fly, Fix, Fl~j 
(A-%=KFI~, Fl. Fl.) 
( A - % = j ( F l x .  O.  FI3 

( A -  % 3 =  t (Fl~. Fly, Flz) 

CA- ~)xa= l ( Fl~, Fly, Fl~,) . (30) 

By taking the surface integral of these functions, we 
have 

7"11= T22~/: T33 and 712 = 723 = Tt3=O.  
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Thus we see that the matrix forms of these two sub- 
groups belonging to the tetragonal system are the same, 
i.e. o) 

0 Tu 
0 0 . (31)  

With the use of a similar consideration, it can be 
confirmed that the matrix forms of T for other groups 
are those listed in Table 1. An exceptional case can 
be seen in the trigonal system, where the matrix forms 
of Tzm are different for the two subgroups belonging 
to this system. 

All the results are in good agreement with the experi- 
ments, although Skelton & Katz's values are a little 
lower than those from the present calculations. It 
should be noticed that rather good agreement with the 
experimental results can be seen in the spherical-vol- 
ume approximation, in spite of its simplicity. 

9. Discussion 

According to the general formalism, the TDS correc- 
tion ~1 is given in a quadratic form in terms of h, by 
introducing the new TDS tensor All. However, All must 
be evaluated for all the reciprocal-lattice points under 
consideration, because Afl,j involves an integral over 

6. Symmetry of the crystal and the tensor All 
(~i-~i') 

Once the matrix forms of Tzm and 69. are known, the 0.4 
matrix form of A,B~j can easily be obtained with the 
relation All =STa.  They are also listed in Table 1. We 
see that the matrix forms of Afl~j are the same for the 
two subgroups of the trigonal system, although the T 03 
are different. Thus, we see that the matrix form of 
Afl, j depends only on the crystallographic system. 

7. Background correction term 

It should be mentioned here that the background cor- 
rection c~[ of equation (1) has the same quadratic form 
as el, because the tensor form of T~m involved in e[ is 
determined by the averaged value of (A-*)z, and is 
not different from that of Tz,. It is therefore possible 
to factorize T,,  from ~[ and equation (1) can be re- 
duced to 

I(obs)=I(Bragg) (1 + kcq), (32) 

where k =  1 -4 ' /4 ,  4' being the integral of ~(1/q2)d3q 
for the range of scan measured in estimating the back- 
ground. Several methods to estimate k have been pro- 
posed for the case of isotropic correction for TDS. 
These methods can be applied to the present general 
case without any modifications. No reasonable value 
of k, however, seems to have been estimated yet. We 
are tentatively using 0.72 since the value 0.67 proposed 
by Willis (1969) seems to be a little low. 

8. Comparison with experiments 

Renninger (1966) has measured the TDS correction kcq 
in equation (32) for 820 and 10,2,0 Bragg reflexions of 
a NaC1 single crystal with the use of a perfect-crysta 
monochromator. It is interesting to compare these with 
the results of the calculations in the present work and 
the results of other calculations. In the calculations, 
4 and 0' were estimated by the use of Rouse & Cooper's 
(1968) program for the approximation in which the 
average value of (A- l ) , ,  is taken and k=0.72 was em- 
ployed for the spherical-volume approximation. The 
results are shown in Fig. 3. As expected, no substantial 
difference can be seen between the different approaches. 

0.2 

0.1 

0 
0 120 

I I I I I 

Spherical volume approximation /t 

..... Average value of (A-I) a W~ 

------ Skelton & Katz (1968) ///~" 
I/ 

, " / U  

I . Renninger (1966) / . ~  

2 0  4 0  60  8 0  100 

h2+ k2+ 12 

Fig. 3. Comparison of calculated values of ~-~ using the 
present two approximations with Skelton & Katz's (1968) 
calculations and Renninger's (1966) measurements for NaCI. 

I I I I I I I I 

I sin(2O) ] 1/3 

t i d' q J q~ 

/ / / / , ,  .S''~'~ ~ . , .  

2 /  Xx 

I 410 I I I I I 
20 60 80  100 120 140  160  180 

20 

Fig. 4. 20-dependence of Aflu; Solid curve for (sin 20) 1/3 and 
dashed curve for numerical calculation of the integral 
fd3q/q ~. Both curves are normalized at 20 = 90 °. 
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qr 

Fig. 5. Schematic illustration of the section of the scan region 
on the qxqy plane. The shaded area has symmetry with 
respect to both qx and qy axes but the parallelogram does 
not have such symmetry. 

an appropriate volume scanned around the reciprocal- 
lattice point, which depends on the scattering angle 20. 
If we adopt the spherical-volume approximation for 
the evaluation of Afl~j, we see that Afl~j depends on 
20 as (sin 20) 1/3 . In the case of an approximation in 
which the average of (A-1)~m is taken, however, such 
simple 20 dependence is not obtained. In order to show 
the 20 dependence of Afl~ in this approximation and 
to compare it with (sin 20) 1/3 for the spherical-volume 
approximation, numerical evaluations of the integral 
Sd3q/q 2 have been made using Rouse & Cooper's 
(1968) program. The result is shown in Fig. 4. There 
are some differences between the two, particularly in 
the low- and high-angle regions. 

In § 6, we have shown that the form of matrix Afltj 
depends only on the crystallographic system. It should 
be noticed that in deriving this result we have im- 
plicitly assumed that the three-dimensional integral 
with respect to q is rewritten in terms of equations (15) 
and (18), that is, the surface integral ~(A-1)tmdS may 
be taken out of the volume integral ~(A-1),m/q2daq. 
However, the characteristic feature of Tzm is, in prin- 
ciple, given by the integration of (A-1),m/q z over the 
region scanned by the counter near the reciprocal-lat- 
tice point. The shape of region does not always have 
the same symmetry around the reciprocal-lattice point 
as that of (A- 1)~m, as shown in Fig. 5. If only the shaded 

area is taken into acount, off-diagonal components of 
Tzm vanish in the case of cubic and orthorhombic sys- 
tems, for example, and the matrix form of T~m would 
be the same as in Table 1. If the integral of the re- 
maining area is taken into acount, however, the in- 
tegral of the off-diagonal component {(A-1)tm/q 2} will 
not be zero. Thus, it should be understood that matrix 
forms of Tim or Afl~j also depend on the shape of the 
scan volume, in the strict sense. It would, however, be 
safe to ignore this effect, since the contribution from 
the non-shaded area in Fig. 5 to the integral S[(A-1)m/ 
q2]daq can be regarded as very small, because q is 
large. In this sense, to compute rigorously the integral 
of 1/q 2 over the scan volume may not be a better ap- 
proximation. 

Recently, the advent of energy-dispersive diffractom- 
etry, i.e. the time-of-flight neutron diffraction tech- 
nique and the white X-ray diffraction method with SSD 
(Solid State Detector) has enabled us to measure in- 
tegrated Bragg intensities. It is easy to extend the 
present method for TDS correction to these cases by 
simply modifying the scan volume. In the limit of the 
spherical-volume approximation this can be done if the 
quantity qm defined by the following relation is sub- 
stituted into equation (15); 

3 qam= ~--  2 sin 2 0~1~u2, 

where A2 is the width of the wavelength profile with 
which the Bragg reflexion is observed. 

Calculations in the present work were carried out 
on the FACOM 230-60 computer of Nagoya Univer- 
sity Computation Centre. 
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